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Abstract— Traditional building energy audits are both 

expensive, in the range of USD$1.29/m2-$5.37/m2, and inconsistent 

in their prediction of potential energy savings. Automation to 

reduce costs of evaluating the energy effectiveness of buildings is 

strongly needed. A key element of such automation is a means to 

estimate the building envelope energy effectiveness. We present a 

method that addresses this need by using infrared thermography 

to characterize building wall envelope effectiveness.  To date, 

thermal imaging approaches for estimating wall R-Values, based 

upon thermal-physical models of walls, require additional manual 

measurements and analysis which prohibit low-cost, large-scale 

implementation. To overcome this implementation challenge, a 

machine learning approach is used to predict wall R-Values for a 

set of residences with known thermal resistance by utilizing the 

measured wall imaging temperature, prior weather conditions, 

historical energy consumption data, and available building 

geometrical data. The developed model is shown to predict wall R-

Values with a maximum test-set root mean squared error of 7% 

using as few as nine training houses. This result has significant 

implications for low-cost large-scale envelope energy effectiveness 

characterization.  

Keywords— Thermal Imaging, Wall Thermal Resistance, 

Machine Learning, energy audits 

I. INTRODUCTION 

A comprehensive study published in 2015 shows that there 
are about 5.6 million commercial buildings in the U.S., most of 
which were constructed before 1980 [1]. A 2003 survey by the 
U.S. EIA suggested that 75% of commercial buildings that were 
built prior to 1960 did not have insulation upgrades [2]. 
Similarly, a 2001 U.S. EIA report documented that only 40.3% 
of U.S. residences were considered well insulated, while more 
than 20% were poorly insulated or not insulated at all [3]. 
Finally, a recent study, based on a one-factor-at-a-time 
evaluation of building enclosure measures, estimated that wall 
insulation upgrades to R30 (5.3 K·m2/W) across the spectrum of 
buildings present in the mid-Atlantic region could result in a 
17.1% reduction in total energy consumption [4].  Extending this 
result to the U.S. as a whole gives savings estimates for cooling 
and heating of respectively 0.0875 and 0.506 EJ. 

Buildings which already have well-insulated envelopes offer 
little savings benefit, and therefore a major challenge is the 
identification of buildings which have the greatest need for 
weatherization upgrades.  However, this prioritization is 
laborious, requiring a large number of manual energy audits at a 
minimum.  A comprehensive set of audits would not only be 
expensive, but also far exceed the capacity of the existing 

number of auditors available [5]. State of the art energy auditing 
costs up to $5.38/square meter [6]. Given a total U.S. building 
floor area of approximately 32.7 billion square meters, the cost 
to audit the entire building U.S. building stock would be in the 
range of USD$42-175 billion [1]. 

Utility analysis has proven effective for identifying buildings 
with high energy consumption and verifying savings from 
retrofits at scale [7]. The basic idea in utility analysis is to 
correlate energy consumption with external temperature and 
other factors.  For temperature-only considerations, linear 
regressions have been used to estimate energy consumption 
sensitivity to weather. These sensitivities, when applied to 
typical weather years, have permitted estimates of weather 
normalized energy consumption [8] [9]. 

Increasingly sophisticated machine learning applied to these 
data have rendered an increasing amount of information about 
the energy effectiveness of buildings [10]; [11]. For example, a 
recent study by [12] used an expanded set of residential building 
energy characteristics that included wall, window, and roof R-
Values, coupled with energy consumption data, to predict 
savings from the adoption of individual measures.  This 
approach was based strictly on actual building data, not on 
physics-based energy models, and the demonstrated results 
indicated that predicted annual savings from HVAC related 
upgrades matched within 2.5 percent of realized savings for 
most of the measures considered. Critical to Atarhuni et al.’s 
study was the use of a large number of buildings/residences for 
which the most important energy characteristics were known. 

Large scale (i.e., at the scale of a utility district) thermal 
imaging of building envelopes could be a component of this type 
of audit to quantify envelope R-Values.  The efficacy of using 
these thermal images at such as scale has been demonstrated 
[13]; [14],but inferring R-Values in an easily automated way 
remains an open challenge. 

Extracting R-Value estimates from infrared thermal imaging 
has been limited by uncertainties that include an inaccurate 
accounting or a neglect of the influence of wind on convection 
heat transfer on exterior surfaces, a lack of knowledge of the 
interior temperature, inaccurate specification of the infrared 
spectrum exterior surface emissivity, inaccurate specification or 
neglect of background radiation rendering reflection from the 
imaged surfaces, and a neglect of dynamic effects arising from 
transient weather conditions or variable internal temperature 
schedules. 

about:blank


DOI: http://doi.org/10.5281/zenodo.4590321  Journal of Energy & Technology (JET)  
                                                                                                                                                                                                         Vol. 1, No.1, 2021 

                           www.rsepress.com  47 | P a g e  

A number of researchers have added measurements 
coincidental with the infrared thermography of the surface to the 
analysis used to extract the R-Values. The error in estimating the 
R-Value associated with the exterior convection coefficient has 
been addressed by measuring the wind speed near or very near 
the surface being imaged [15], [16], [17], [18], [19], [20]. The 
error arising from uncertainty in knowing the internal 
temperature has been overcome by direct measurement [18], 
[21], [22], [23], from exterior thermal imaging through a 
partially opened window [15], [16], [17], [19], and [20], and 
through connection to a Building Information Management 
(BIM) system [24]. In order to reduce the exterior surface 
emissivity specification error which renders error in inferring 
the surface temperature from the thermal image, researchers 
have either added targets with known emissivities to or near the 
surface being thermally imaged [15], [16], [19], [20], thermally 
imaged an unheated/uncooled surface with identical surface 
finish as the targeted surface for thermal imaging [25], or 
measured the surface emissivity with an emissometer [17]. The 
error associated with incorrect specification of or neglect of 
reflected energy from the surface has been overcome through 
the use of reflective targets applied to the imaged surfaces [18], 
[21], [25], [19], [20]. Last of all the errors associated with 
neglecting dynamic influences on the surface temperature have 
been addressed by restricting the use of thermography to near 
steady weather conditions [15], [16], [17], [18], [21], [19], [20],  
through multiple measurements taken at different times and 
seasons or through continuous monitoring over a relatively short 
period of time [25], [26],  and through integration of the 
thermography inferred exterior surface temperature into a 
dynamic thermal building model [22], [23]. Table 1 summarizes 
this review. 

Collectively these approaches have yielded excellent 
predictions of R-Values. For example, Madding (2008) reported 
errors in predicting the R-Value between 5-12% [27]. Fokaides 
and Kalogirou (2011) report errors in the range of 10-20% [21].   
Dall’O et al. (2013) report R-Value errors as high as 50% for 
well-insulated walls associated with the high R-value walls 
where the temperature difference between the exterior wall and 
ambient environment is small [25].  Nardi et al. (2014) reported 
errors in the range of 1-12% [19].However, the primary 
weakness of these approaches is the time required to analyze 
collected data. Any of the processes that require placement of 
additional targets, either reflective or of known emissivity, 
virtually negate potential low cost, at-scale implementation. The 
same could be said about the use of anemometry measurement 
of the wind speed near the surface. Further, development of a 
3D dynamic house model [22], [23] using IR obtained exterior 
wall temperatures as input would be impossible to do with low 
cost and at-scale [22], [23]. 

 Recognizing both the promise of automated energy audits in 
identifying priority energy savings at regional and national 
scales, we propose a method to predict residential wall R-Values 
from exterior infrared thermal imaging in a way that preserves 
current accuracy levels and critically, can be implemented at 
large scales and at low cost. The approach posed requires no 
additional measurement other than thermography.  Instead it 
leverages additional data about each residence, including 
publicly accessible building geometry information, local 

historical weather data, and historical energy data. We combine 
this information with known wall R-Values obtained from 
residential audits in order to develop a data-based model capable 
of accurate prediction of wall R-Values in residence where 
audits have not been performed. 

 

Table 1:Summary of measurements/approaches made by prior 

researchers to reduce error in estimating the wall R-Value 

from building envelopes 
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Tonelli,2008 [15], 
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Grinzato et al. 2010 

[18] 
        

Fokaides & Kalogirou, 

2011 [21] 
        

Dall'O et al. 2013 [25]         
Ham & Golparvar-

Fard, 2013 [22] 
        

Nardi et al. 2014 [19]         
Ham & Golparvar-

Fard, 2014 [23] 
        

Ham & Golparvar-

Fard, 2015 [24] 
        

Albatici et al. 2015 

[17] 
        

Nardi et al. 2016 [20]         
 

 In the remainder of this manuscript, we first present the data 
and pre-processing steps utilized for this study, and then 
describe the machine learning approaches employed.  Next the 
results are presented, including model predictive statistics and 
validation results. Finally, we summarize the results, discuss the 
practical implications of the work, and identify shortcomings 
and future needs 

II. METHODOLOGY 

A. Data Description  

During the summer of 2015 energy audits were completed 
on a total of 142 student residential homes owned by a 
Midwestern US university. These audit data included a 
determination of the amount and type of insulation in the walls 
and roof, areas and types of windows, floor heights, maximum 
occupancy, appliance (refrigerator, range, and oven) 
specifications, heating ventilation air-conditioning system 
specifications, domestic hot water equipment specifications, the 
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presence of a basement, and interior house to attic penetration 
area. The local county database was used to obtain detailed 
geometrical features of each residence, including the year built, 
floor area for each level, number of baths, number of bedrooms, 
and total floor area. Historical monthly energy consumption (gas 
and electric) data were collected for each residence for the 
period from January 2014 through August 2015. From these 
data, some general energy characteristic trends were observed. 
The oldest homes, constructed in the early 1900s, generally had 
very little insulation in the walls and ceilings. The windows in 
these homes were mostly double-paned or single-paned with 
storm windows. Some of these houses had been recently 
upgraded with improved energy effective systems or 
demolished and replaced with newer, more energy effective 
residences. The renovations included double-paned window 
replacements and the addition of 125 mm insulating wall board 
to the exterior wall of the residences beneath new siding. The 
newest homes, by contrast, were constructed in adherence to 
U.S. Department of Energy Star criterion.  Additionally, over 
time, some very old furnaces and water heaters had been 
replaced with high efficiency units in many of the residences. 

Critical to this study is a reasonable distribution of energy 
characteristics among the housing set targeted. Table 2 
documents the range of residential building characteristics 
measured among the houses audited. All walls were wood 
framed walls with either 2x4 or 2x6 construction. The R-Values 
presented in the tables represent clear ‘wall’ calculated values 
from knowledge of the type of construction and the amount of 
fiberglass insulation in the walls. All houses had vinyl or wood 
siding. Of these, 41 had low or medium wall R-Values and 
twelve had high wall R-Values.  For example, the wall R-Value 
ranges from 0.7 to 2.43 m2.K/W, the roof R-Value ranges from 
1.14 to 7.04 m2.K/W, and the natural gas fueled furnace 
efficiency ranges from 55% to 95%. For this study, a random 
sample comprising 53 houses of the full dataset was selected for 
thermal imaging.  

 

Table 2:Residential building geometrical and energy data and 

range of values made during the summer 2015 audit 

House characteristics Minimum Maximum 

Attic penetration area (cm2) 0 3716 

Basement vent area (cm2) 0 348 

Floor area (m2) 66 258 

Window area (m2) 7 27 

Wall area (m2) 54 302 

R-Value roof (m2.K/W) 1.14 7 

R-Value windows (m2.K/W) 0.18 0.35 

R-Value wall (m2.K/W) 0.70 2.43 

R-Value basement (m2.K/W) 0.70 0.88 

Energy factor for water heater 0.55 0.95 

Furnace efficiency (%) 60% 97.4% 

Number of occupants 2 12 

Seasonal Energy Efficiency Ratio (SEER)(AC) NA 16 

 

The historical monthly energy usage for each building was 
combined with the known historical weather condition data for 
each meter period in order to develop new energy characteristics 
of the residence.  The Prism methodology was employed to do 
this (Fels 1986). This approach renders a simple, psuedo-

mechanistic model for predicting monthly energy consumption, 
𝐸𝑖,𝑔𝑎𝑠 , of the form of:  

 

𝐸𝑖,𝑔𝑎𝑠 = 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑔𝑎𝑠,𝑖   +  𝐻𝑆𝑔𝑎𝑠(𝑇𝑏𝑎𝑙ℎ,𝑔𝑎𝑠 − 𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒) 

H(𝑇𝑏𝑎𝑙ℎ,𝑔𝑎𝑠 − 𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒)                                                               (1) 

 

This equation includes three fit parameters, 
𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑔𝑎𝑠,𝑖  (MJ m-2 month-1), the average monthly weather-

independent natural gas energy intensity, HSgas (Wm-2 K-1), the 
weather-sensitive monthly gas energy intensity with outdoor 
temperature, and the 𝑇𝑏𝑎𝑙ℎ,𝑔𝑎𝑠 (oC),  the heating balance point 

temperature associated with the average temperature below 
which heating occurs. In this equation, the function H is the 
Heaviside function. These fit parameters are effectively energy 
system characteristics of the houses.  The derived slope accounts 
not only for losses through the walls, windows, and ceiling, but 
also infiltration, passive solar heat gain, plug loads, human 
loads, and water heating loads which translate to heating within 
a residence. The average monthly weather independent energy 
consumption, 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑔𝑎𝑠,𝑖 , accounts for the water heating 

energy consumption of the residence for the houses in this study. 
Lastly, the heating balance point temperature accounts partly for 
residential variation in thermostat setpoint scheduling. The most 
important point here is that that the weather sensitive fit 
parameter, HSgas, accounts for the amount of wall insulation. If 
the wall insulation is increased, the value of this terms decreases.  

The annual normalized annual heating can be determined by 
translating these fit values to a typical weather year, where the 
summation is over every hour in the year and Ti is the typical 
hourly temperature for a specific hour, i , in the year. 

 

NAHC [MJ 𝑚−2 𝑦𝑒𝑎𝑟−1] = 𝐻𝑆 ∑ (𝑇𝑏𝑎𝑙ℎ −𝑇𝑖)

8760

𝑖

 
          
(2) 

 

A FLIR SC8303 thermal imaging camera was used for the 
imaging. All thermal images were acquired around 4 am during 
cold winter mornings over a one-month period to minimize the 
effect of solar absorption during the day. All raw images were 
reduced assuming a surface emissivity of 0.9. An average 
temperature of each surface was calculated based on this 
estimate. Previous research by the authors [28]  demonstrated 
that a 5% error in estimating the emissivity could translate to a 
20% error in estimating the R-Value using a dynamic model of 
the envelope. Thus, there was need to better estimate the 
emissivity of the surfaces being used. For this study, a visual 
approach was employed to characterize the far infrared spectral 
emissivity of the various surfaces imaged using the available 
emissivity databases [29], [30]. Ultimately, this approach could 
be automated using image processing. A corrected temperature 
for each surface was calculated using Equation (2). Use of this 
equation assumes that the wall surface radiosity is dominated by 
emitted energy from the surface, not reflected energy. Given that 
all walls imaged were estimated to have emissivities greater than 
0.8, this assumption is reasonable.  
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Tinferred emissivity  = Tmeasured at ε=0.9    × (
ε = 0.9

ε
)

0.25

     (3) 

 

Last of all, the wind speed, exterior temperature, and solar 
flux for 48 hours prior to each image were acquired from an on-
site weather station. A local Onset Hobo weather station located 
within 0.5 km of all homes imaged was used to collect this data. 
Data was sampled at 1-minute intervals.  Thus, for each imaging 
event, the weather conditions prior to the imaging were 
available. 

Ultimately the features shown in Table 3 were used to 
predict the wall R-Value. Each observation included the 
following predictors: the corrected wall temperature 
measurement from the infrared thermography, HS, Tbalh,, 
Baselinegas,i , total floor area (Af ), wall area (Aw),  attic area (Aat), 
total window area (Awin), heating slope (HS), and maximum 
occupancy ( 𝑂𝑀 ). To capture the dynamic effect owing to 
weather transients, the ambient air temperature from two hours, 
five hours, and twelve hours prior to the imaging and averaged 
over the past 48 hours were included as predictors. In addition, 
the vertical solar radiation flux averaged over the past 48 hours 
was considered as a predictor. Finally, the target variable is the 
measured wall R-Value. 

 

Table 3:Predictor variables for data-mining approach 

Variable Name Description 

𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  Corrected wall surface temperature (K) 

𝐼_48, previous 48 hr 

(average) 

Vertical solar radiation (W m-2), averaged 

over previous 48 hours 

𝑇∞−48 , previous 48 hr 

(average) 

Ambient temperature, averaged over previous 

48 hours 

HS Heating intensity slope (W m-1K-1) 

Tbalh  Heating balance point temperature (K) 

Baselinegas,i Weather independent monthly gas intensity, 

(MJ month-1 m-2) 

𝐴𝑊/𝐴𝐹  Ratio of wall to floor area 

𝑂𝑀 Occupancy maximum 

𝑇∞  Ambient temperature at imaging time (K) 

𝑇∞−2  Ambient temperature two hours prior to the 

imaging time (K) 

𝑇∞−5  Ambient temperature five hours prior to the 

imaging time (K) 

𝑇∞−12  Ambient temperature twelve hours prior to the 

imaging time (K) 

 

B. Data Pre-Processing 

We used three primary pre-processing steps. In the first, a 
Pearson correlation plot (Figure 1) was developed to investigate 
feature correlation. This figure shows that the predictors are not 
highly correlated (correlation coefficient ~> 0.7) to include in 
the model except for the ambient temperatures with respect to 
time. This may or may not be true in general.  The second pre-
processing step was to normalize all data from 0 to 1 for each 
predictor. To do this the mean, maximum, and minimum values 
of each predictor were obtained. The scaled values for each 
predictor then were calculated according to Equation (4) below.  

𝑆𝑐𝑎𝑙𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜 = 
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑣𝑎𝑙𝑢𝑒−𝑚𝑖𝑛 𝑣𝑎𝑙𝑢𝑒

𝑚𝑎𝑥 𝑣𝑎𝑙𝑢𝑒−𝑚𝑖𝑛𝑖 𝑣𝑎𝑙𝑢𝑒
 (4) 

 

 

Figure 1:Pearson correlation plot for all potential predictors 

 

We considered up-sampling the data to yield a training 
dataset which would have a uniform distribution in the wall R-
value. However, as shown in Figure 2, there were three 
dominant wall R-Values, with a reasonable number of 
observations in each of the ‘bins’.  Figure 2 shows a histogram 
of the scaled values of the wall R-Values of the complete dataset.  

 

Figure 2: Histograms of scaled wall R-Value in the original data 

 

C. Model Training Data 

In order to develop machine learning models capable of 
predicting the wall R-Values, the wall R-Value must be known 
for at least a sampling of residences.  Due to the expense (both 
in time and capital) of individual audits, it is important to 
purposefully select the houses to audit in order to guarantee that 
houses with high, medium, and low wall R-Values are in the 
training set used to develop the model. Two approaches are 
posited for identifying these training houses. The first is to group 
houses according to NAHC into low, medium, and high values. 
These houses could be audited prior to the imaging date. The 
second approach is to first collect and examine imaging data, 
and then subsequently audit select houses.  In this method, the 
measured exterior wall temperatures from the collective group 
of houses imaged would be grouped into low, medium, and high 
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bins and then reference houses to be audited would be randomly 
selected from these subsets.  

Figure 3a and 3b respectively show the relationship between 
the NAHC and corrected measured surface temperature versus 
the wall R-Value. Both of these features have some correlation 
to the wall R-Value, but it is clear that neither could be a good 
predictor of the R-Value on its own.  

 

 

(a)  

 

(b)  

Figure 3: a). Measured wall temperature and b). Normalized annual heating 
consumption (NAHC) intensity versus measured wall R-Value for each of the 

53 residences included in the study 

 

Ultimately, the training data must include houses with low, 
medium, and high R-Values.  
The up-sampling method described in Sec. 3.2 is used for the 
training data in order to equalize the class data for wall R-Value. 
However, using an artificial test set for validation could lead to 
mischaracterization of model generality, and so instead the 
developed model is applied to the original dataset for 
verification.  

D. Machine Learning Models and Validation 

A number of machine learning models were explored and 
tested, including a random forest regression, a deep learning 
model, a support vector machine, and statistical model. We 
provide result detail for the two methods that performed the best, 
the random forest regression and the deep learning model. The 
random forest approach is an ensemble method that aggregates 
a series of individual regression trees (weak learners) in order to 

reduce model variance, and which can readily incorporate 
complex, nonlinear feature interactions in order to predict a 
response. Random forest is an ensemble method that aggregates 
a series of weak learners (individual regression trees) in order to 
reduce model variance.  Deep learning models connect input 
features to the output response through a series of nonlinear 
functions, and with sufficient data and network complexity have 
the capacity to encapsulate nearly any continuous functional 
form.  Both methods have demonstrated reliable performance in 
building energy forecasting. 

The loss function selected for both models was the mean 
squared error (MSE), defined as: 

 

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑦′𝑖 − 𝑦𝑖 )

2

𝑛

𝑖=1

 (5) 

 

where n is the number of validation data points, yi is the 
actual response variable, and 𝑦′𝑖  is the predicted response.  

The solution parameters used for each of the model 
techniques are as follows. For the deep learning model, a 
relatively simple architecture with 2 hidden layers, 12 nodes per 
layer, and a tanh activation function was selected as these model 
characteristics yielded the best prediction performance. For the 
random forest model, 500 trees and 3-5 decision variables for 
each tree were selected.  

A randomized 10-fold cross-validation approach was used to 
develop and validate each of models using the original dataset. 
The samples were randomized, and split into 10 equal sections, 
or folds. One independent model was then constructed for each 
fold, using all data except that in the fold for training, and 
validating on the removed data in the fold.  The errors from of 
each of these 10 validation sets were then averaged to give a 
final model score [31] . Two metrics are applied to establish the 
quality of the validation; namely the r-squared value and root 
mean square error. Further, given the limited number of 
observations included in the study (54), the randomized folds 
can affect the quality of the model. To eliminate any variation 
from the random fold selection, a large number of randomized 
folds were considered for each data grouping considered. The 
reported prediction test metrics are the averages of the individual 
prediction quality metrics for each randomized fold analysis.   

III. RESULTS 

The model validation performance demonstrated high 
accuracy.  The RMSE for the scaled data (0-1) for the deep 
learning and random forest approaches were respectively 0.029 
and 0.066. The r-squared values were similarly strong, equaling 
0.995 and 0.978 respectively for the two techniques.  We note 
that, given the clustering of responses towards the response 
extremes, r-squared values by themselves may provide an overly 
optimistic assessment of model performance.  However, the 
combination of strong validation performance with respect to 
both RMSE and r-squared metrics is convincing. This is further 
evidenced by Figure 4, which shows the predicted versus actual 
scaled wall values for the complete up-sampled dataset for a) the 
deep learning approach and b) the random forest approach. The 
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jittered plots (whereby slight noise was added to the actual 
responses to slightly separate the points) show exceptional 
correspondence between predicted and observed values.  

 

 

(a) Deep Learning 

 

(b) Random Forest 

Figure 4: Predicted versus observed scaled wall R-Values for (a) deep-learning 
model and (b) random forest model. Note: points are shown with jitter for 

clarity. 

In Table 4 we show the effect of inclusion of various features 
on the prediction quality.  The various feature types are grouped 
by color, with light blue associated only with the thermography 
derived data, red corresponding to weather conditions at and just 
prior to the imaging, tan corresponding to energy characteristics 
derived from historical energy data, sky blue associated with 
geometrical data, and yellow corresponding to occupancy data. 
Both the RMSE and R-squared values are presented. The 
prediction quality for three general data groupings is shown, 
including IR + weather, derived energy characteristics + 
geometrical + occupancy, and all features.  

When only the thermography-derived surface temperature is 
employed, the prediction quality is relatively poor (RMSE = 
0.110, R2

 = 0.901). The addition of the outside temperature at 
the time of imaging improves the prediction quality improves 
sign (RMSE = 0.090, R2

 = 0.910).  This RMSE suggests a mean 
error of 9% of the difference between the maximum and 
minimum R-Value. Inclusion of the weather conditions prior to 
the imaging time worsens the prediction quality.  

 We also explored use of only the derived energy 
characteristics, in conjunction with the geometrical and 

occupancy data. The energy characteristics alone yield a better 
prediction quality than the coupling of IR and weather data 
(RMSE = 0.62, R2

 = 0.973). The addition of occupancy causes 
some decline in the prediction quality (RMSE = 0.62, R2

 = 
0.967). These results cooberate findings by Altarhuni et al. who 
showed that derived energy characteristics and geometry data 
can be used to failry accurately predict physical energy 
characterics [12]. The last case considered within this grouping 
shows the effect of adding weather data to the derived energy 
characterics, geometry, and occupancy on the prediction quality. 
The weather data at the time of the imaging should be irrelevant 
given the exclusion of the IR derived data. We observe a slight 
reduction in prediction quality, which would be expected when 
irrelevant data is added as features. 

The fundamental question we were trying to answer is “can 
IR data be combined with derived energy characteristics, 
geometrical, and occupancy data to improve prediction of the 
wall R-Value?”   The last data grouping presents prediction 
quality to answer this question.  In general, the prediction quality 
is improved compared to the prior groupings. The best 
prediction quality is obtained when all of the data features are 
included (RMSE = 0.110, R2

 = 0.901). This represents about a 
25% improvement in prediction accuracy relative to the 
prediction using derived energy characteristics and geometrical 
data alone, and an 80% improved accuracy relative to the 
prediction using IR derived and weather data.  

 

Table 4:Prediction quality for variable input features 

 

It is important to note that the prediction quality shown in 
Table 4 represents the average prediction quality from 50 
random folds for each data grouping considered. These average 
results do not change if a larger number of random folds are 
considered.  

IV. CONCLUSIONS 

The ability to perform energy audits of buildings at large 
scales and at low cost is essential for the rapid adoption of 
energy reduction strategies. Remote, automated thermal 
imaging to estimate envelope R-Values could be a component 
of this type of energy auditing.  Our research demonstrates that 
machine learning can be used to accurately predict the wall R-
value using only the IR derived exterior surface temperature 
measurement, weather conditions at and prior to the imaging 
time, derived residential energy characteristics from historical 
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metered energy data and weather data, geometrical data, and 
occupancy data.  

There is still much research needed. First, there is a need to 
sample far more houses across a broad range of climate 
conditions to improve both the model performance and 
generality. Additionally, this study examined only residences 
with wood or plastic siding. Brick and stone walls are more 
massive than the walls considered here, and thus the dynamic 
weather effects will be different. It is almost certain that the 
training set of residences of known R-Values will need to grow 
to account for different types of walls. Lastly, the models 
developed here could be improved by leveraging smart WiFi 
thermostat data to document the temperature setpoint 
schedule(s) in the residence at and prior to the imaging time. The 
prediction accuracy would almost certainly be improved by 
including factors in the model that provide greater detail about 
the transient weather conditions prior to the imaging time.   

There are numerous large-scale opportunities for this 
approach. Geo-referenced drive-by or drone-based fly-over 
thermal imaging is feasible. Thus the IR derived exterior 
temperatures could be automated and could be relatively low 
cost. For example, LiDAR GIS mapping, which has been highly 
automated, of the U.S. state of Indiana is estimated to cost on 
the order USD$50/square kilometer [32]. If similar costs for 
automated thermal imaging could be realized, then in dense 
urban areas, which can have up to 8,000 homes per square km, 
the per home price of thermal imaging could be well less than 
USD$1 per house.  

In conclusion, our work helps to demonstrate the potential of 
merging IR derived exterior wall temperatures, historical energy 
data, weather data, building geometry data, and even occupancy 
data available for residences to automatically predict the wall R-
Value. We anticipate that a similar methodology could be used 
to predict roof R-Values. More generally this work shows that it 
may be possible to simply leverage available information and 
readily collectable information to automatically audit the energy 
effectiveness of residences. If this could be achieved then energy 
efficiency programs could more strategically be designed to 
focus on investment of the most cost effective energy reduction 
opportunities for individual residences and among a group of 
residences.  
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