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Abstract— Cooling accounts for 12-38% of total energy 

consumption in schools in the US, depending on the region. In this 

study, stacking learning is utilized to predict chiller running 

capacity for four school buildings (regression) and to predict the 

chiller status for four another schools (classification) using a 

collection of interval chiller data and building demand. Singular 

and multiple measurement periods within one or more seasons are 

considered. A generalized methodology for modeling building 

energy systems is posited that informs selection of features, data 

balancing to attain the best model possible, ensemble-based 

stacked learning in order to prevent over-fitting, and final model 

development based upon the results from the stacked learning. 

The results show that ensemble-based stacked learning improves 

the model performance substantially; providing the most accurate 

results for both regression and classification. for both 

classification and regression. For, classification, the balanced 

accuracy is 99.79% while Kappa is 99.39%. For regression, the R-

squared value, the mean absolute error (MAE) error, and the root 

mean squared error (RMSE) are 1.78 kW, 2.77 kW, and 0.983 

respectively. 
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I. INTRODUCTION 

High energy use and greenhouse gas emissions are a 
substantial challenge in the world today. According to the 
United States Environmental Protection Agency (EPA), the total 
emission of CO2 in 2017 was 6,457 million metric tons. High 
energy use and greenhouse gas emission not only effect the 
environment, but they also effect the economy. For instance, K-
12 schools (schools from kindergarten to the 12th grade) in the 
United States spend $8 billion on energy bills each year; higher 
than what this sector spends on computers and textbooks 
combined. Moreover, around 30% of these schools were built 
before 1960 [1]. For these pre-1960 schools there were no 
energy code requirements. These schools particularly have more 
potential for energy efficiency improvements.  

Figure 1 shows typical school energy use by category [1]. Of 
course, the actual disaggregated energy use can vary from 
school to school; depending upon on many other factors such as 
climate region, level of reinvestment in energy systems, 
geometry, schools’ activities, appliances and HVAC efficacies, 

and energy supply resources.  Cooling for example, can vary 
from 12% of total energy consumption in cold and humid 
climates to 38% of total energy consumption in hot and dry 
climates [1]. There appear to be substantial opportunities for 
savings which ultimately could permit reinvestment into 
improving the education of students. For example, a US EPA 
reference in 2008 suggested that school retrocommissioning 
could save a typical 9290.304- Square meters school building 
between US$10,000 and $16,000 annually, and simple 
behavioral and operational measures alone can reduce energy 
costs by up to 25 percent [2]. Similarly, a 2020 US Department 
of Energy study documented that as much as 30 percent of a 
district’s total energy is used inefficiently or unnecessarily [3].  

 

 

Figure 1: Average energy use for schools in the US [1] 

This research addresses only a case-study associated cooling 
energy component in schools; with a specific focus being to 
predict chiller running capacity for eight K-12 school buildings 
using short-term collection of interval chiller data and building 
demand over singular and multiple measurement periods within 
one or more season. The intent is to provide a means for energy 
service companies to quickly assess opportunities for savings 
from efficiency upgrades and to provide a means for low-cost 
continuous commissioning of the chiller from interval building 
demand alone.  
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But even more importantly, this research provides a general 
framework for modeling time-varying building energy systems 
potentially applicable to a myriad of applications and systems. 
The following provides background particularly relevant to the 
general modeling framework posed. 

II. LITERATURE REVIEW 

The problem of estimating cooling and heating loads based 
on data driven models was first addressed by Kashiwagi and 
Tobi (1993). The authors implemented a Neural Network to 
predict heating and cooling loads.  For the network model and 
learning algorithm, Kohonen's Feature Map and Vector 
Quantization (LVQ) were chosen. The authors used three 
months of measured data from August 1 to October 31 to build 
their model. The August data was used for training and the 
September and October data for testing. The results were 
promising and showed the feasibility of applying data mining 
techniques in the energy consumption arena [4]. Similarly, 
Ushiro et al. (1999) proposed a three-layered neural network to 
predict the cooling load for the next day. They used a simplified 
robust filter to eliminate missing data and outliers. Five weeks 
of data was used to build the model (80% for learning and 20% 
for testing). The normalized mean squared error (NMSE) of the 
model was 1.2 x 10-3 [5].  

Ben-Nakhi and Mahmoud (2004) employed state of the art 
building simulation software, ESP-r to simulate the thermal 
performance of three public buildings and an office building in 
a very hot climate. The purpose of their study was to forecast 
next day hourly cooling load before the actual weather data was 
known using neural networks (NN). Three years of simulated 
data was used to train the model, one year was used for testing, 
and one was used for validation. One goal was to generalize the 
neural networks to fit different buildings. To find the optimum 
general regression neural networks, six neural networks for each 
business hour were considered and trained [6]. In a study by Yao 
et al. (2004), the authors combined four different techniques to 
predict hourly cooling loads for the next-24-hours. The 
techniques considered were multiple linear regression (LM), 
autoregressive integrated moving average (ARIMA), artificial 
neural network (ANN), and grey model (GM). The weight of 
each model was evaluated by three criteria: 1) degree of fitting 
to the historical data, 2) adaptability, and 3) reliability. Analytic 
Hierarchy Process (AHP) was used to combine and connect 
these models to enhance the prediction. After the first ten hours 
of forecasting, a larger error rate was observed [7].  

Hou et al. (2006) integrated an artificial neural network 
(ANN) with rough sets (RS) based on multiple sensors readings 
to predict cooling load for a building with eleven air-handling 
units. Hourly data was obtained by averaging the measured five 
min interval data.  The researchers first found the most 
significant factors contributing to the cooling load and used 
these as predictors for the ANN model. Since the data was 
collected from different sources instead of one, the authors 
developed multiple models to take advantage of redundant data. 
The optimum principle was used to define the weights of each 
model and a best model was chosen.  The relative error between 
actual and predicted loads for their best models was within 4% 
[8].  

Li et al. (2009) conducted two different studies to predict 
hourly cooling load for an office building in Guangzhou, China. 
The first study was done by utilizing four prediction model. 
These models are a back propagation neural network (BPNN), a 
radial basis function neural network (RBFNN), a general 
regression neural network (GRNN), and a support vector 
machine (SVM). The inputs variables for a given time were the 
current and previous hour and previous two hours normalized 
outdoor temperature; current normalized humidity; and current 
and previous hour normalized solar radiation. The hourly 
cooling load was estimated using DeST software. Ultimately, 
the hourly cooling load and weather data for the month of July 
was used to train the models. The data of May, June, August, 
and October were used for testing data. Their results illustrated 
that SVM and GRNN were slightly better in estimating the 
cooling load [9] .  

The second study was done by applying support vector 
machine (SVM) and compared their findings with results from 
a back-propagation (BP) neural network model. Their results 
showed SVM to have higher accuracy and better generalization. 
The predictors for their study were normalized outdoor dry-bulb 
temperature for the current and previous hour and the previous 
2 hours, normalized relative humidity, and normalized solar 
radiation intensity for the current and previous hour. The 
normalized cooling load was the target. The month of July was 
used to train the model. May, June, August, and October data 
were used to the model. Moreover, the simulation software 
(DeST) was used to calculate the office building’s hourly 
cooling loads [10]. Lixing et al. (2009) implemented a least 
squared support vector machine (LS-SVM) to predict hourly 
cooling load using the mySVM software tool. They used current 
and historical hourly outdoor temperature, humidity, and solar 
radiation as inputs to predict cooling load. The cooling load was 
simulated using DeST and the weather data was obtained from 
the climate database for Guangzhou for a typical meteorology 
year for the period from May to September.  May and June data 
was used for training and July, August and September data was 
used to test the model. The results were compared to those 
obtained from using back propagation neural network (BPNN). 
LS-SVM seems to perform better accuracy compare to BPNN 
[11].  

Wang et al. (2013) developed a simplified prediction method 
for a cloud-based continuous commissioning application to 
predict cooling load. Based on load profile similarity 
(similarities in occupancy schedule), a reference day for each 
day was chosen and was used as the initial prediction of the 
cooling load. They then investigated the correlation among 
weather data in order to define the most correlated variables. The 
prediction of these variables was used to calibrate the result of 
the prediction of the initial load according to the reference day. 
Lastly, the prediction error of the previous two hours was used 
to enhance the calibrated load prediction. This method was 
implemented on a super high-rise building in Hong Kong. The 
measured data was from a period of time from mid-June to early 
August in 2011. The root-mean-squared error (RMSE) and the 
R-squared value the initial load prediction was 0.89 and RMSE 
2144 kW respectively. The results of calibrated load prediction 
were improved. When errors of the past 2 hours were used as 
predictors, the results showed the best agreement with the actual 
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data with 0.96 R-squared and 1058 kW RMSE [12]. It should be 
noted however that for a continuous commissioning application, 
the errors may be associated with a change in performance and, 
thus, are a desired result of such modeling and frankly may not 
be suitable to have as a predictor to improve the quality of the 
prediction.  

Huang and Huang (2013) used Autoregressive Moving 
Average with Exogenous inputs (ARMAX) model, Multiple 
Linear Regression (MLR) model, Artificial Neural Network 
(ANN) model and Resistor–Capacitor (RC) network (a 
simplified physical model) to predict the cooling load for an 
office building in Hong Kong. The inputs variables were the 
previous four-hour cooling load, dry bulb outdoor air 
temperature, solar horizontal radiation, and room temperature 
set point. The results show that MLR and ARMAX models have 
better performance with the smallest mean MBE and mean 
standard deviation [13].  

Sun et al. (2013) applied a general regression neural network 
(GRNN) with single stage (SS) and double stages (DS) to 
predict load. In a DS model, the first step is to predict the 
weather data for the next 24 hours; the second step is to predict 
cooling load. Two hotels in China were chosen to test and 
validate the models. These researchers found that the DS method 
showed some success, but the predictive control system was too 
difficult due to measuring and predicting many weather data. In 
comparison, the SS approach was found to be more effective in 
predicting cooling load [14].  

Chou and Bui (2013) employed five different models to 
predict heating and cooling loads for twelve different building 
types simulated using the software tool Eco-tect. Support vector 
regression, artificial neural network, classification and 
regression tree, chi-squared automatic interaction detector, and 
general linear regression models were first developed. Then, 
each model was evaluated and ranked based on its performance. 
Finally, another model was introduced by combining the two 
highest ranked models into an ensemble model. The results 
illustrated that combining support vector regression and an 
artificial neural network model yielded the highest accuracy in 
predicting cooling load, while support vector regression alone 
had the highest accuracy predicting the heating load [15]. 

Tian et al. (2015) applied an improved multivariable linear 
regression model to predict the average daily cooling load for an 
office building. The actual data was obtained by measuring the 
cooling load for two office buildings in Tianjin Chine for the 
purpose of validating the model. The first step in their method 
was to define the most significant weather data variables 
affecting the cooling load and transfer them into new 
uncorrelated variables by using principal component analysis 
(PCA). Secondly, the cumulative effect of high temperature 
(CEHT) was used to study the effect of higher outdoor 
temperature on the cooling load. Then, newly measured data was 
used as feedback by updating the current data point to be used 
in the next prediction point. The mean absolute relative error 
MARE was less than 8% [16].  

Elhashmi et al. (2021) utilize a short-term chiller and total 
building demand to predict annual chiller demand. The authors 
used two data collection scenarios. The first relies upon use of 
multiple weeks of data collection that includes very warm 

periods and season transitional periods. The second scenario 
employs use of contiguous data for a several weeks during only 
the warmest period of the year. The results show that using two 
or more separate time periods to envelope most of the weather 
data yields a much more accurate model in comparison to use of 
data for only one time period [17] 

III. CASE STUDY 

This study focuses on eight school buildings located in 
Dayton, Ohio, USA. The data used here are real time kW and 
chiller running capacity for each school for five-minute interval 
for four schools and fifteen-minutes interval for the remaining 
four schools to provide a record of power and chiller running 
capacity from June 6, 2018 until October 31, 2018. The data for 
four of the eight schools shows only the compressor status (ON 
or OFF). Thus, for these schools, the target is the chiller status 
(classification), while for the remaining four schools, the target 
is to predict the actual chiller running capacity (regression). The 
relatively long period of data collection enveloped the entirety 
of a cooling season, extending into a period of time where 
cooling was infrequent. Thus, this data afforded an opportunity 
to test different periods of time for training data.  

IV. OBJECTIVES 

The aim of this study is to predict chiller running capacity 
for eight school buildings and to provide a clear road map for 
utilizing machine learning in energy engineering applications 
with that help reduce prediction error and reduce over-fitting 
from data, algorithm, and process considerations.  Real-world 
data often contains missing values, outliers, and in many cases 
it is imbalanced. Pre-processing of the data can improve the 
models developed and enhance the general applicability of the 
developed models. Algorithmic considerations for machine 
learning are associated by tuning the model hyperparameter. 
Process level considerations include the possibility of 
combining multiple learning algorithms through what is termed 
ensemble learning, utilizing a combination of techniques with 
high bias and low variance and low bias and high variance. 
These considerations also include the estimation of 
generalization error from cross-validation to ensure the 
development of a final model that will deliver nearly equal 
performance on training and validation data (e.g., data not used 
in the model training). In particular, this research studies the 
impact of the following on predictive model accuracy:  1) 
possibility of using a portion of the data to represent the entire 
population (define statistic tests and apply them);  2) data 
balance and its impact on model accuracy;  3) use of three types 
of ensemble machine learning algorithms (bagging, boosting, 
and stacking); and 4) tuning models through hyperparameter 
optimization.  

V. METHODOLOGY 

The process used to predict the chiller status (classification) 
and to predict the actual chiller running capacity (regression) is 
summarized in Figure 2. First, possible predictors for the chiller 
running capacity are hypothesized (feature engineering). The 
second step is data pre-processing. This includes removing 
anomalous observations (large spikes), imputing missing values 
since they are unpredictable, and normalizing data. The third 
step involves validating the appropriateness of a selected 
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training data set for developing a model generalizable to a much 
longer time frame. Here we consider using training data 
acquired over 20 days and four week intervals.  Pearson’s chi-
square test and Kolmogorov-Smirnov tests are used to validate 
whether the training data sufficiently represents the longer 
duration data for which the developed model will ideally be 
applicable for. This step has to our knowledge not been included 
in prior studies, but is essential for developing generalizable 
models from short-term data collection. 

The fourth step involves balancing the data for classification 
models using Under-Sampling, SMOTE, ROSE. Lastly, we 
build the predictive model using ensemble learning. This 
approach has rarely been used to for machine-learning based 
energy modeling. This approach involves modeling in several 
stages. In the first stage, seven or eight different algorithms for 
classification and regression are considered independently, with 
tuning parameters trained and optimized using the whole 
training dataset. In the second stage, the meta-model is trained 
on the outputs of the models that have different variable 
importance. It is worth mentioning here that to avoid overfitting, 
the base learners’ models were selected based on their different 
structure and their different hyperparameter settings. The third 
stage involves use of ten-fold cross-validation four times is used 
to validate each mode. Variable importance shows only how 
each model utilizes the predictors. Thus, it could be a good 
indicator that these models work differently and reduce the 
overfitting.  

 

 

Figure 2: Summary of Methodology Employed 

The following provides greater detail about each of these 
steps.  

a. Data-Subsetting: 

Training datasets based upon different data collection 
periods were established in order to establish requirements for 
training data necessary for developing generalizable models 
capable of predictions over much longer time frames (ideally 
yearly or at least seasonally). To successfully address the 
statistical significance of the subset data and demonstrate 
appropriate representation by the subset data of the original data, 
we need to compare each predictor in the subset to the predictor 
in a complete dataset (taken over a longer period of time). 

Statistically, this means that the sample feature should have the 
same probability distribution of the feature in the complete or 
original population. Pearson’s chi-square Kolmogorov-Smirnov 
tests are common approaches for respectively comparing 
categorical and numerical variables. Moreover, both tests work 
under the null hypothesis whereby the subset data is presumed 
to not be representative of the complete or original population 
[18].  

b. Dealing with Imbalanced data:  

Imbalanced data is associated with non-uniform 
distributions of the features in a dataset [19]. This means the 
number of observations for one or more classes are significantly 
higher or lower than other classes. Hence, the performance of a 
standard algorithm may yield poor predictions of the minority 
class. In the past years a few solutions have been developed to 
address the problem of imbalanced data for both data and 
algorithms. These include: 1) data re-sampling, random 
oversampling with replacement, random under-sampling, 
directed oversampling, and directed under-sampling, directed 
under-sampling; and 2) adjustments in the costs of the various 
classes, e.g., adjusting the probabilistic estimate at the tree leaf 
and adjusting the decision threshold [19]. This latter approach 
means the minority class or low probability density regions of a 
feature can be weighted more heavily. 

The resampling methods used here to handle imbalanced 
data for classification are under-sampling, synthetic minority 
over-sampling technique (SMOTE), and ROSE (Random Over-
Sampling Examples). In the under-sampling method, 
observations from the majority class are eliminated until the 
majority class is equal to the minority class. The drawback of 
this technique is that removing observations may lead to loss of 
some information relating to the majority class. The SMOTE 
methodology is based on over sampling of the minority class by 
generating synthetic data for a minority class. These synthetic 
data are created by joining the points of the minority class with 
line segments and then placing artificial points on these lines. 
More specifically, for each minority class observation, the 
algorithm gets its K-nearest-neighbors and a synthetic 
point anywhere on the line bH-based resampling technique that 
is used to handle imbalanced data for binary classification 
problems by producing synthetic examples from a conditional 
density evaluation of the two classes [20]. 

c. K-Fold Cross-Validation:  

K-fold cross-validation is the most common statistical 
method for estimating generalization error in predictive models 
and comparing the performance of different algorithms [21]. 
The general procedure of creating a predictive model is to train 
the model on the whole training dataset, and then test the model 
on one or several validation datasets which were not used for 
training the model. But in K-fold cross-validation the procedure 
is different and as described in the following steps [21]:   

1) Randomly spilt the dataset into unique k equal folds 

(subsets). 

2) For each unique subset, 

a) train the model using k-1 folds and use Fi   for 

validation.  

b) calculate the model accuracy.  
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3) Repeat this process until the number of folds is reached.  

4) Estimate the final accuracy of the model by averaging all 

accuracies obtained from all subsets.  
This validation approach is especially important in the 

ensemble learning approach described in the next section.  

d. Ensemble Learning 

Ensemble learning was originally introduced by Dasarathy 
and Sheela (1979) [22]. It is a method that combines multiple 
learning algorithms (models) called base learners to build a 
robust model that solves a particular problem yielding a more 
accurate prediction [23] [24]. Furthermore, ensemble learning 
reduces model errors by creating several learners with relatively 
similar or fixed bias and then combines the outputs from these 
learners to reduce the variance [23]. The generalization error in 
the predictive model can be broken down into following: 

 Total Error = Bias2 + Variance + Irreducible Error 

In this equation, bias is the difference between the model 
actual mean and the actual mean value of the estimate while the 
variance represents the change of the target function behavior if 
different training data was used. Irreducible error is the error that 
cannot be controlled or reduced. In simple words, bias is the 
difference between predicted values and the true values while 
variance is the sensitivity of an algorithm to specific training 
data sets [21] [23].  

The ideal model has low bias and low variance. 
Nevertheless, the bias and variance seem to have tradeoff 
relationship. As the bias increases, the variance decreases, and 
vice versa [23]. Finally, usually models with high variance 
perform well on training data and poorly on the data beyond the 
training set, while high bias models perform poorly in predicting 
both training and testing sets.  

The most common methods for ensemble learning are 
bagging, boosting, and stacking. In bagging, the training dataset 
is randomly spilt into multiple subsets, then a base model is built 
for each subset. All base models could run independently in 
parallel and final predictions are estimated from all the base 
models [25] [26] [24].  

Boosting is a sequential learning process where multiple 
weak models are created based on correcting the errors of the 
previous model. The first model is built on a subset from the 
training dataset where all data points are given equal weights. 
Then, this model is used to make predictions on the whole 
training set. Based on the prediction results, a new weight is 
assigned to the observations that were poorly predicted.  
Similarly, several models are built and each model learns from 
the performance of the previous models [27] [26].   

Stacking learning is a two-stage procedure. First, different 
predictive models are built using the same training data. Then, 
new datasets are created using the outputs from each model. 
These datasets are then used to build the final model [26]. The 
procedure of stacking learning is as following: 

1. Train each individual base learners (models) on the 
training set. 

2. Predict and test using base learners.  

3. Build a new model based on the predictions from the 
base models (the predicted values from the base model 
are used for training and testing the final model) 

The advantage of this technique is to reduce bias and 
variance, which leads to an improved predictive model 
compared to a single model. 

Ensemble learning also can be formed by a simple formula 
such as averaging, majority voting, and weighted average. This 
can be done by developing several models and then applying a 
simple formula on the outputs of these models for the final 
prediction. The advantage of this technique is to improve the 
overall performance because the prediction decision is made 
after considering more opinions from different predictive 
models instead of relying on a single predictive model (same 
thing can be said about stacking learning). Finally, in general 
predictive models, a specific percentage of data is used for 
training, testing, and validating. If this senior is implemented in 
ensemble learning, where different models stacked together, we 
will end up having only a single evaluation on our test set for 
each model and this result could be biased or obtained by a 
chance. But with 10 fold cross-validation, each individual model 
is trained and evaluated 10 times.  When the results of all 10 
folds are consistent and similar or almost similar for each of the 
folds, then we are confident that our model is robust enough to 
be generalized and it will have similar performance on new 
datasets.  

e. Evaluate Performance for Classification  

The choice of the base learners models is extremely 
important for achieving the highest accuracy prediction. The 
eight algorithms used for classification (note: the chilling target 
in some of the schools are discrete chilling load percentages) as 
base learners and their tuning parameters are presented Table 1. 
The selection of these models was based on their different 
structure and their different hyperparameter settings.  

Table 1: Base learners’ models and tuning parameters (After R software) 

 
Model  Tuning parameters 

Generalized Linear Model GLM - No tuning parameters 

Recursive Partitioning and 

Regression Trees 
RPART - Complexity Parameter(cp) 

Random Forest RF 
-Number of Randomly Selected 

 Predictors(mtry) 

Neural Network NNET 
-Number of Hidden Units (size) 

-Weight Decay (decay) 

Stochastic Gradient 

Boosting 
GBM 

-Number of Boosting Iterations  

-Max. Tree Depth  

-Min. Terminal Node Size  

n.minobsinnode 

Support Vector Machines 

with Radial Basis 

Function Kernel 

SVM -Sigma Cost (C) 

Sparse Partial Least 

Squares 
SPLS 

-Number of Components (K) 

-Threshold (eta) 

-kappa 

Naive Bayes NB 

- Laplace Correction (fL) 

- Distribution Type (usekernel) 

 -Bandwidth Adjustment(adjust) 

 

The goal in assessing model performance is to evaluate its 
overall accuracy. However, this is much easier said than done. 
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There is one primary issue in developing some metric that 
quantifies the overall accuracy. Doing so assumes uniformly 
distributed class. However, in many cases the class distribution 
in a dataset is not uniform, or even close to it [28].  For instance, 
if we have a dataset with two class responses and one class has 
10,000 observation and another class has only 200, it is easier 
for an algorithm to accurately predict the class with the high 
number of observations then predict the minor class. Thus, 
reliance upon accuracy alone is not enough to judge the model 
performance. 

Table 2: Confusion matrix 

Predicted Class1 Class2 

Class 1 True Positive (TP) False Positive (FP) 

Class 2 False Negative (FN) True Negative (TN) 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 (1) 

 

One means to ensure accuracy across responses is use of the 
Kappa statistic (Cohen’s Kappa) which was introduced by Jacob 
Cohen 1960. It measures the agreement between actual and 
predicted class responses by considering the accuracy that 
generated randomly according to the frequency of each class 
Kappa is defined as [29]: 

𝐾𝑎𝑝𝑝𝑎 =  
𝑎𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

1 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 (2) 

where the baseline prediction can be calculated as [29]: 

 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =  ∑
(𝑇𝑃 + 𝐹𝑁) × (𝐹𝑃 + 𝑇𝑁)

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁

𝑘

𝑖=1

        (3) 

 

This metric measures the agreement between actual and 
predicted class responses by considering the accuracy that 
generated randomly according to the frequency of each class 
[30].  

The no-information rate is the accuracy obtained in 
predicting the majority class [30]. For instance, if the target 
variable has two classes and one class represents 90% of the data 
or this example, a model with 90% no-information rate indicates 
that this model fails to predict any observation from minor class 
and accurately predicted all the observations for the major class.  
A 95% confidence interval of a model represents within a 
confidence level of 95% where a prediction will reside.  The 
sensitivity (true positive rate) of a model characterizes the 
accuracy of predicting the positive class (event of interest) for 
all samples having the event. Conversely, specificity (true 
negative rate) characterizes the proportion of accurately 
predicting the negative class [30]. 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

     (4) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
  

(5) 

  

Prevalence is the proportion of all positives in in our data [30]: 

 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑖𝑠 =
𝑇𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

(6) 

 

The positive predictive value (precision) is the proportion of 
an accurately predicted positive class to the total positive class. 
Whereas, the negative predictive value is the proportion of 
accurately predicting the negative class to the total negative 
class [30]. 

 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
    (7) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (8) 

 

Finally, the detection rate is the proportion of the correctly 
predicted TP to the total number of observations, while detection 
prevalence is the proportion of the predicted true positive values 
(TP) to the total number of observations.  

f. Evaluate Performance for Regression 

Figure 3 shows the actual chiller running capacity (target). 
Since the target has many zeros associated with non-operation 
of the chiller system, a two-step machine learning approach is 
used to solve the regression problem. This methodology is 
depicted in Figure 4. The first step encodes the target where all 
nonzero are set to ON and zeros are set to OFF. Then, the data 
is treated as a classification problem following same procedure 
described in the previous section. The next step is to build a 
regression model for all nonzero predicted values. The base 
learners regression models and their tuning parameters are 
shown in Table 3.  

 

 

Figure 3: Actual chiller running capacity 
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Figure 4: Two-step machine learning approach 

 

Table 3: Base learners regression models and tuning parameters 

Model Type  Tuning parameters 

Generalized Linear 

Model 
GLM -No tuning parameters 

Recursive Partitioning 

and Regression Trees 
RPART -Complexity Parameter(cp) 

Random Forest RF 
-Number of Randomly Selected 

Predictors(mtry) 

Neural Network NNET 
-Number of Hidden Units (size) 

-Weight Decay (decay) 

Stochastic Gradient 

Boosting 
GBM 

-Number of Boosting Iterations  

-Max. Tree Depth  

-Min. Terminal Node Size  

Support Vector 

Machines with Radial 

Basis Function Kernel 

SVM -Sigma Cost (C) 

Principal Component 

Analysis 
PCR -Number of Components (ncomp) 

 

The literature now appears unsettled as to the most 
appropriate indicator of average model performance. Concerns 
about both methods has been raised since 2005. Some 
researchers suggest that RMSE might be a misleading indicator 
while others suggest RMSE could be more beneficial than MAE 
[31]. Here, the Root Mean Squared Error (RMSE) and Mean 
Absolute Error (MAE) error metrics are used. Since studying the 
difference between the RMSE and MAE is beyond the scope of 
this work, RMSE and MAE will be used together to diagnose 
the errors and asses the predictive models in regression. 
Mathematically, RMSE and MAE are defined as [31]: 

 

𝑅𝑀𝑆𝐸 =   √  
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 (9) 

 

𝑀𝐴𝐸 =  
1

𝑁
 ∑|𝑦𝑖 − 𝑦̂𝑖|

𝑁

𝑖=1

 (10) 

 

where yᵢ is the actual value and ŷᵢ is the predicted value. 
 

VI. RESULTS AND DISCUSSION 

a. Feature Engineering: 

Time of day, day of the week and month were encoded by 
adding sin and cos transformations according to:  

sin 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = sin (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∗ (2𝜋/𝑝𝑒𝑟𝑖𝑜𝑑), and 

cos 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = cos (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∗ (2𝜋/𝑝𝑒𝑟𝑖𝑜𝑑) 

 
The advantage of this transformation is that it provides a full 

cycle for theses variables as shown in Figure 5 for month, day 
and hour of day. The month sin and cos graph does not show full 
cycle because in the data we have only five months. Were we to 
be looking at 12 months of data, we would expect a full cycle 
that represents all 12 months.  

(a) 

 

(b) 

 

(c) 

Figure 5: Time transformation for month, day of week, and hour of day 
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b. Results for classification 

i. Evaluating the Suitability of Different Training 

Periods 

The p-values from Pearson’s chi-square test and 
Kolmogorov-Smirnov test for each indicator in both training 
data subsets (twenty days data and one month data) are 
illustrated in Table 4. When the indictors in these training 
datasets (20days and a month) are compared to the indictors in 
total dataset, we notice that most variables have a low p-value 
which suggests rejection of the null hypothesis. Thus, it can be 
concluded these subsets do not represent the original data except 
for the hour of day features. Both training datasets do not seem 
to well reflect the complete dataset.  

Table 4: p-values for all indictors 

Variables 
20 Days of 

Training Data 

1 Month of 

Training Data 

p-values p-values 

Sin day of week 0 0.4982447 

Cos day of week 0 0.1402884 

Sin month 0 0 

Cos month 0 0 

Sin hour of day 0.9098922 0.6289666 

Cos hour of day 1 1 

Previous 24 hours building 

demand 
0 0 

Total building demand 0 0 

Outdoor air temperature 0 0 

Dewpoint 0 0 

Outdoor relative humidity 0 0 

Chiller running capacity 

status 
8.235395e-35 0.0293871 

 

ii. Checking for data balance for classification  

As mentioned previously, the response for the first four of 
the eight buildings for which we have data is in terms of chiller 
running capacity status rather than chiller demand. Thus, we 
know for these buildings if the chiller is ON or OFF (Figure 6). 
The ratio between ON and OFF is 1: 7.37. This suggests an 
imbalance of data, leading to potential bias in the predictive 
models emerging and poor prediction of the minority class. 

   

 

Figure 6: Chiller running capacity 

In the next section, models are developed after utilizing the 
data balancing approaches described in the methodology. Also, 
it discusses the evolution of all base learners models mode as 
well as stacking learning for different balancing methods.   

iii. Evaluating Individual Model Performance for 

Different Data Balancing Approaches  

The previous section suggests that our data is imbalanced. 
Therefore, three methods were used to balance the data. Models 
were developed using the balanced data and compared to each 
other, as well as the models developed without data balancing.  
As noted in the methodology sections, three methods of data 
balancing were evaluated: under-sampling, SMOTE, ROSE.  
After balancing the data using these techniques, eight base 
learner models (GLM, RPART, RF, NET, GBM, SVM, SPLS, 
and NB) were built based using the raw unbalanced data and 
from data emerging from the three data balancing approaches.  
The model development involved the stacking of models that 
have different variable importance (see Section 3.4). The results 
indicate the SVM, SPLS, and NB have the same variable 
importance. Therefore, SPLS and NB have been excluded in the 
stacking stage. In addition, predictions using the models which 
had differing of variable importance (GLM, RPART, RF, 
NNET, GBM, and SVM) are used to train the meta model 
(GLM).   

Table 5 provides a brief summary of the performance of the 
base learners models; while Table 6 shows the results from 
stacking learning, both results are based on different data 
reassembling techniques. As Table 6 demonstrates, stacking 
helps improve the accuracy of all predictions with all types of 
class balancing. In the end, balanced data using the ROSE 
technique along with stacking learning provide the best results 
for predicting both classes. Another observation from Table 5 is 
that the results utilizing the raw data yields the second-best 
performance. This is because the ratio between ON and OFF is 
1:7.37 does not indicate extreme imbalanced data and some base 
learner models have the ability to handle some imbalanced data. 
Moreover, results from under-sampling the majority class 
appear to be the worst. This probably is because removing 
observations may lead to loss of information about the majority 
class. Finally, notably both the total accuracy Kappa value using 
ROSE balancing approach after stacking yields significantly 
higher accuracy and Kappa value in comparison to Table 5. 
Finally, since the best results were obtained after balancing data 
using the ROSE, Figure 7 illustrates the performance of the base 
learners models and stacking learning that constructed using 
ROSE.   

c. Results for Regression 

As described in the methodology, a two-step machine 
learning approach is used to solve the regression problem for the 
remaining four schools for which interval chiller demand data is 
available. Following the procedure described by Figure 2, the 
results for each step is shown in the following sub-sections. 

i. Data Subsetting  

The p-values from Pearson’s chi-square test and 
Kolmogorov-Smirnov test for each indicator in both training 
data subsets (twenty days data and one month data) are 
illustrated in Table 7. When the indictors in these training 
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datasets are compared to the indictors in total dataset, we notice 
that most variables have a low p-value which suggests rejection 
of the null hypothesis. Thus, it can be concluded these subsets 
do not represent the original data except for the hour of day 
features. 

 

Table 5: Evaluating the base learners models performance 

Method  
Raw 

Data 

Under-

Sampling 
SMOTE ROSE 

GLM 
Accuracy 0.931547 0.860023 0.881802 0.931524 

Kappa 0.625022 0.514884 0.555132 0.624900 

RPART 
Accuracy 0.954700 0.912643 0.918122 0.953602 

Kappa 0.776374 0.668116 0.679446 0.772627 

RF 
Accuracy 0.961796 0.925815 0.948612 0.960087 

Kappa 0.812144 0.709376 0.779543 0.804707 

NNET 
Accuracy 0.945580 0.900973 0.915722 0.942484 

Kappa 0.724476 0.630118 0.669574 0.707744 

GBM 
Accuracy 0.955775 0.921815 0.949911 0.956032 

Kappa 0.781312 0.696677 0.780850 0.781155 

SVM 
Accuracy 0.946306 0.914903 0.937333 0.955363 

Kappa 0.720349 0.675820 0.743051 0.776548 

SPLS 
Accuracy 0.917573 0.866711 0.890460 0.917188 

Kappa 0.495713 0.525640 0.571377 0.497498 

NB 
Accuracy 0.913863 0.880949 0.838185 0.903812 

Kappa 0.591722 0.440474 0.468209 0.566659 

 

Table 6: Stacking results (final model) 

Criteria Raw Data 
Under-

Sampling 
SMOTE ROSE 

Accuracy 0.994 0.9625 0.9842 0.9987 

95% CI 
(0.9936, 

0.9943) 

(0.9616, 

0.9635) 

(0.9836, 

0.9848) 

(0.9985, 

0.9989) 

No 

Information 

Rate 

0.8837 0.8535 0.8732 0.8813 

P-Value < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 

Kappa 0.9711 0.8378 0.927 0.9939 

Sensitivity 0.9952 0.9939 0.9952 0.9988 

Specificity 0.9847 0.7798 0.9088 0.9979 

Prevalence 0.8830 0.8535 0.8732 0.8813 

Detection 

Rate 
0.8787 0.8483 0.8690 0.8803 

Detection 

Prevalence 
0.8805 0.8805 0.8805 0.8805 

Balanced 

Accuracy 
0.9899 0.8869 0.9520 0.9983 

 

After rejecting the null hypothesis that these subsets 
represent the original data, the original data is used to build all 
models. The first step encodes the target where all nonzero 
values of the chiller demand are assigned 1; all other 
observations are set to 0. Then a classification algorithm is used 
to predict zeros and non-zeros. Since all buildings are K-12 
schools and experience roughly the same weather and similar 
operating hours and conditions, the four schools  for which 
actual chiller power is known are expected to behave similar to 
the schools for which chiller capacity is known (presented in 
Classification Results section). Thus, the data balancing, model 
selection, and model stacking process described in the previous 
section is followed here. 

 

Figure 7: Models performance using ROSE vs. actual chiller running capacity 

(classification) 

 

Table 7: p-values for all indictors 

Variables 
20 Days of 

Training Data 

1 Month of 

Training Data 

p-values p-values 

Sin day of week 0 0.4982448 

Cos day of week 0 0.1402885 

Sin month 0 0 

Cos month 0 0 

Sin hour of day 1.331319e-10 7.376722e-11 

Cos hour of day 7.376721e-11 1 

Previous 24 hours building 

demand 

0 0 

Total building demand 0 0 

Outdoor air temperature 0 0 

Dewpoint 0 0 

Outdoor relative humidity 0 0 

Chiller running capacity  0.002928241 0.033871312 

 

Tables 8 and 9 summarize the results for individual models 
(base learners) and stacking learning respectively. After 
predicting zeros and non-zeros, regression models are built to 
predict non-zeros values. Only models that have different 
variable importance and which have acceptable accuracy are 
selected for stacking learning. Here, the accuracy of the NNET 
seems way off and thus it is excluded from stacking learning. 
Table 10 summarizes the results for both base learners models 
and stacking. Stacking learning scientifically improve the 
accuracy and reduce the errors. The best individual model in this 
case is RF which has the lowest MAE and RMSE and the highest 
R2 value.  Nevertheless, stacking learning has decreased the 
RMSE by 42% and MAE by 44% relative to this best individual 
model. Table 9 once again shows a marked improvement in 
predicting both accuracy and Kappa value if stacking is 
employed. Finally, A time series plot of the actual chiller 
running capacity as a function of time for the month of August 
is shown in Figure 9. The figure compares both the actual and 
predicted values. It is clear that the two lines representing actual 
and predicted consumption correspond very well for the 
stacking compared to all other models. 



Doi: http://doi.org/10.5281/zenodo.4560626   Journal of Energy & Technology (JET) 

Vol. 1, No. 1, 2021  

                           www.rsepress.com  44 | P a g e  

 

Table 8: Classification models and their results using ROSE 

Method Criteria ROSE 

GLM 
Accuracy 0.8541678 

Kappa 0.7083337 

RPART 
Accuracy 0.8898505 

Kappa 0.7796982 

RF 
Accuracy 0.9173758 

Kappa 0.8347597 

NNET 
Accuracy 0.8999375 

Kappa 0.7998873 

GBM 
Accuracy 0.9102270 

Kappa 0.8204577 

SVM 
Accuracy 0.9191084 

Kappa 0.8382210 

 

Table 9: Stacking Results 

Method Criteria ROSE 

Stack GLM 

Accuracy ~1 

95% CI (0.9999, 1) 

No Information Rate 0.5021 

P-Value < 2.2e-16 

Kappa ~1 

Sensitivity ~1 

Specificity ~1 

Prevalence 0.5021 

Detection Rate 0.5021 

Detection Prevalence 0.5021 

Balanced Accuracy ~1 

 

 

Figure 8: Models performance vs. actual chiller running capacity 

(first-step in regressing)  

 

Table 10: Results for base learners models and stacking 

Method MAE RMSE R2 

GLM 10.59111 13.4486 0.6045816 

RPART 4.963909 8.323886 0.8496640 

GBM 4.940508 7.470123 0.8784525 

PCR 11.89507 14.93703 0.5121906 

SVM 4.424521 7.279133 0.8844209 

NNET 38.08494 43.67709 0.0417501 

RF 3.997286 6.606394 0.9048827 

Stack 1.780854 2.7766997 0.9831397 

 

 

Figure 9: Time series for actual chiller running capacity vs. predicted plots for 

all models: (a) GLM; (b) RPART; (c) PCR; (d) SVM; (e) RF; (f) GBM; (g) 

Stacking. 

 

VII. CONCLUSIONS 

This study provides a robust generalizable framework for 
utilizing machine learning in building energy applications for 
both classification and regression problems. This process begins 
with the pre-processing of data, which includes removing 
anomalous observations, imputing missing values, and 
normalizing data.  The next step is to define the appropriate 
procedure and testing for selecting the training data set and to 
validate the appropriateness of the training dataset in reflecting 
the broader dataset. Here, we selected two different data set (20 
days and one month). Then we tested these datasets to define 
whether or not these subsets represent the entire data set using 
Pearson’s chi-square Kolmogorov-Smirnov tests. Almost all 
variables in subset data have too low of a p-value which suggest 
rejection of the null hypothesis that these subsets represent the 
original data. The third step involves data-balancing. Under-
Sampling, SMOTE, ROSE are common approaches which 
could be utilized. The data-balancing is especially important for 
modeling systems with a preponderance of on-time or off-time. 
The results demonstrate balancing data using ROSE has 
significate impact on model accuracy. Finally, the last step 
involves use of Stacked Learning,  developed from individual 
models based upon several different ML algorithms with 
different variable importance, different structure, and different 
hyperparameter settings. Variable importance shows only how 
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each model utilizes the predictors. Thus, it could be a good 
indicator that these models work differently and prevent 
overfitting. The validation results presented here are improved 
significantly through stacked ensemble learning. 

 Lastly, the results show significant improvements. A Kappa 
of 99.39% and an accuracy of 99.79% were achieved in 
classification, and regression yielded the R-squared value, 
MAE, and RMSE of 0.9831, 1.78 (kW), and 2.77 (kW) 
respectively. A stacked learning approach developed from 
multiple models is based on several different machine learning 
algorithms with varying variable importance, and different 
hyperparameter settings. Therefore, it would be an indication 
that these models work differently and prevent overfitting. 
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